Bats, Birds, and Boggans: The Simulated Armies of Epic

Thierry Dervieux-Lecocq, David Gatenby, Mark Adams, and Justin Bisceglio

Blue Sky Studios*

Figure 1: Crowd Shots, Epic © 2013 Twentieth Century Fox Film Corporation. All Rights Reserved.

1 Introduction

In Epic (2013), crowds are integral to the narrative and form a char-
acter as a whole. This required a new type of crowd at Blue Sky
Studios, one that permits dynamic interaction between crowd char-
acters and the environments around them in addition to supporting
the high-resolution geometry with fur, deformation rigs, and ma-
terial complexities needed for shots where the crowd is close to
camera. Our crowd framework centers around the choice to sepa-
rate the simulation process from the technique used to render the
crowd. This meant we could use different simulators for different
shots. At times, the crowd exceeded 100,000 characters, far more
than in any of our previous films. To manage all this data we store
only per character joint animation instead of deformed geometry.
This compact format allows us to both display art direct-able rep-
resentations of the crowd in real-time and to defer evaluation of the
expensive parts of the rig until render time. To render the crowd
with our in-house ray-tracing renderer, CGIStudio™, we build a
custom, optimized deformation system that supports rendering of
both deformed geometry and deformed voxels.

2 Up, Up, and Away

Sixty percent of the simulated crowd shots in Epic featured charac-
ters that walked, ran, and climbed on the ground or on walls. We
turned to Massive exclusively for simulation on these shots to take
advantage of its brain editing toolset for controlling the motion and
behavior of individual agents. The other forty percent of shots con-
sisted of highly choreographed flocking bats, grackles, and hum-
mingbirds with riders on their backs. For these crowds we decided
on a hybrid approach using Houdini for the main flocking motion
and finishing in Massive to overlay animation cycles and secondary
motion. Hummingbirds and bats each have their own unique, styl-
ized way of flying. To simulate the specialized flight patterns of our
animals we created an expanded version of the “Boids” flocking
model in a Houdini DOP network. We modeled the erratic flight of
bats using noisy figure eight cycles and for the hummingbirds over-
laid sharp lateral xy-plane bursts. Once the motion and flow of each
flock was approved we would import this data into Massive to con-
trol the agents using a custom API plug-in. Through this plugin we
could send arbitrary attributes created in Houdini to act as inputs to
the Massive agent’s brain. This allowed us to easily trigger actions,
choose weapon types, or add secondary motion without having to
create complex new brains modules inside Massive.

*E-mail: {thierry,davidg,marka,justinb} @blueskystudios.com

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.

SIGGRAPH 2013, July 21 — 25, 2013, Anaheim, California.

2013 Copyright held by the Owner/Author.

ACM 978-1-4503-2261-4/13/07

3 Creating, Viewing, and Editing

Having developed our own render-time deformation system, we
could save just the skeletal joint animation and not create geom-
etry caches at simulation time. This decreased the file footprint on
disk while also increasing display and simulation speeds. To ac-
curately visualize the crowd during post-simulation editing and di-
rector approval, we created a real-time crowd viewing engine. Be-
cause many departments at Blue Sky use Maya, we incorporated
our viewing engine into Maya’s existing viewport so the crowds
could be seen in context with the rest of the scene and available
for other departments, without needing to render. Various geome-
try resolutions were available to the user, each displaying accurate
material representation. This allowed the directors to evaluate and
make notes confidently knowing what they are seeing will hold true
through render. The engine also provides a GUI that allows for art
directing the crowd, including changing character and garment vari-
ation, LOD, and transformations. Most editable features of the GUI
are also provided as render-time handles. The engine uses OpenGL
vertex buffer objects for each character that are transformed using
the simulation data. For a crowd of 100,000, the data is about 1,000
times smaller than if we used a geo-cache, making it easy to fit in
the GPU.

4 Render Optimization

In rendering shots with crowds, taking an aggressive approach to
minimizing the storage of geometric data had handsome payoffs.
Rather than storing geometry for every deformed crowd character
on disk, we developed a rendering system in CGIStudio™ where
only the skeletal animation and key-framed attribute data was re-
quired. Each crowd character species shares one rig and each vari-
ation in a species shares one mesh. For each crowd character, in-
dividual animation is supplied to the rig and evaluation of the rig
generates a uniquely deformed mesh. We found that reading this
compact animation data from disk combined with evaluating a rig
for each character was faster than reading cached geometric point
data from disk by a ratio of more than 1000:1. We built support for
rendering the crowd characters as either geometry or as voxels. Us-
ing a sparse voxel octree, our voxel data requires less memory than
geometry. Moreover, when rendering the crowd as voxels we are
able to entirely eliminate geometric data from main memory while
ray-tracking. This is because our voxel data can be deformed di-
rectly by the rig. Overall, this integrated render-time deformation
system allowed us to streamline both the rendering and the pipeline
of our crowd assets for Epic.



